TRANSITION METAL CHEMISTRY
 VII. CALCULATION OF CO STRETCHING FORCE CONSTANTS AND SEPARATION OF MESOMERIC AND INDUCTIVE EFFECTS FOR LM(CO) ${ }_{5}$ COMPLEXES

F. T. DELBEKE, E. G. CLAEYS AND G. P. VAN DER KELEN
Laboratory for General and Inorganic Chemistry - B, University of Ghent, Krijgslaan 271, 9000 Ghent (Belgium)

(Received November 30th, 1970)

SUMMARY
Refined values of the CO stretching force constants for monosubstituted metal pentacarbonyl complexes have been obtained by rigorous direct methods of calculation.

The following compounds have been treated by this method: manganese carbonyl complexes, halogenometal pentacarbonyls, some recently prepared aminocarbene complexes $[\mathrm{RHN}(\mathrm{Me}) \mathrm{C}] \mathrm{Cr}(\mathrm{CO})_{5}$, carbene pentacarbonyl compounds $\left[\mathrm{R}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right) \mathrm{C}\right] \mathrm{M}(\mathrm{CO})_{5}\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}\right.$ and $\left.\mathrm{M}=\mathrm{Cr}, \mathrm{W}\right)$, phosphacarborane metal carbonyls of general formula $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~N}\left[\mathrm{~B}_{9} \mathrm{H}_{10} \mathrm{CHE} \cdot \mathrm{M}(\mathrm{CO})_{5}\right]$ with $\mathrm{E}=\mathrm{P}$, As and $\mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{Cr}$ and arsine pentacarbonyl complexes of Cr, Mo and W .

Using the more exact carbonyl stretching force constants obtainable from such calculations, relative σ and π Graham parameters for a series of $\mathrm{LMn}(\mathrm{CO})_{5}$ compounds have been derived. The relative importance of σ and π bonding in some organotin derivatives is discussed.

CALCULATION OF FORCE CONSTANTS

Using the Cotton and Kraihanzel force field ${ }^{1}$ and the orbital overlap theories cutlined by Jones ${ }^{2}$, a more exact method for the direct calculation of CO stretching force constants of complexes of the general formula $\mathrm{LM}(\mathrm{CO})_{5}$ has recently been presented ${ }^{3}$.

Previously, all papers dealing with calculations of force constants in the CO stretching region for substituted metal carbonyls used the Cotton and Kraihanzel approximative method which enabled only three of the five related force constants to be evaluated, and in an attempt to resolve this problem. Dalton et al. ${ }^{4}$ have published some interesting interaction force constant relationships by introducing angular correction terms in the treatment of Jones ${ }^{2}$. As mentioned earlier this procedure does not improve the results.

If however, the interaction force constants relations and the rigorous algebraic
(continued on p. 394)
TABLE 1
observed carbonylstretcuing modes, asiginments and force: constants for $\mathrm{LM}(\mathrm{CO})_{3}$ compounds

Compound	Ref.	Frequencies (cm^{-1})				Force constants (mdynes/ \AA)				
		$A_{1}(1)$	$A_{1}(2)$	B_{1}	E	k_{1}	k_{2}	$k_{\text {c }}$	$k_{\mathrm{a}^{\prime}}$	k_{1}
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{ClSnMn}(\mathrm{CO})_{5}{ }^{\text {a }}$	5	2101	2015	2039	2006	16.651	16.72,	0.1978	0.26967	0.4675_{6}
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SnMn}(\mathrm{CO})_{5}{ }^{\text {a }}$	5	2089	1998	2021	1991	$16.30{ }_{H}$	16.499^{8}	0.2376	0.24316	$0.4808{ }^{\text {f }}$
$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{SnMn}(\mathrm{CO})_{9}{ }^{\text {a }}$	6	2116	2029	2059	2034	$16.76{ }_{3}$	17.13,	$0.2082{ }_{1}$	$0.2067{ }_{2}$	0.4149_{3}
$\mathrm{C}_{6} \mathrm{H}_{5}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{SnMn}(\mathrm{CO})_{5}{ }^{\text {a }}$	6	2108	2020	2047	2020	16.63_{6}	16.92,	0.2186,	$0.2218{ }_{4}$	0.4405_{3}
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SnMn}(\mathrm{CO})_{5}{ }^{0}$	6	2101	2016	2038	2012	16.56_{4}	16.797,	0.2278 ${ }_{1}$	0.21273	0.4405_{4}
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{ClSnMn}(\mathrm{CO})_{5}{ }^{6}$	6	2103	2018	2044	2018	$16.59{ }_{7}$	$16.87{ }^{\text {, }}$	0.2113_{7}	$0.2133{ }_{6}$	0.4247_{3}
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}_{2} \mathrm{SnMn}(\mathrm{CO})_{5}{ }^{\circ}$	6	2113	2023	2058	2031	$16.68{ }_{2}$	17.08 s	0.1950_{8}	0.2230_{4}	$0.4181{ }_{2}$
$\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{COMn}(\mathrm{CO})_{5}{ }^{\text {a }}$	7	2125	2017	2067	2042	$16.53{ }_{9}$	$17.27{ }_{6}$	0.22036	0.2075_{3}	0.42789
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COMn}(\mathrm{CO})_{5}{ }^{\text {a }}$	7	2114	2002	2055	2021	$16.38{ }_{1}$	16.98	0.2016_{8}	0.27997	0.4816_{5}
$\mathrm{C}_{2} \mathrm{~F}_{5} \mathrm{COMn}(\mathrm{CO})_{5}{ }^{\text {a }}$	7	2130	2023	2069	2039	$16.68{ }_{7}$	17.26_{8}	$0^{0.22104}$	0.24897	$0.4700{ }_{2}$
$\mathrm{CH}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right) \mathrm{CCr}(\mathrm{CO})_{s}{ }^{\text {b }}$	8	2064	1961	1983	1947	15.76	15.87,	0.2747_{7}	0.2858_{2}	0.5605,
	8	2063	1958	1982	1947	$15.69{ }_{6}$	$15.87{ }_{4}$	0.27951	0.2778 ,	0.5573_{2}
$\mathrm{CH}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right) \mathrm{CW}(\mathrm{CO})_{5}{ }^{5}$	8	2072	1958	1980	1945	$15.67{ }^{\text {\% }}$	$15.89{ }_{3}$	0.33049	0.2775_{3}	0.6080_{2}
$\mathrm{n} \cdot \mathrm{C}_{4} \mathrm{H}_{9}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right) \mathrm{CW}(\mathrm{CO})_{5}{ }^{\text {b }}$	8	2073	1957	1981	1945	15.667	$15.89{ }_{9}$	0.32869	0.2855_{3}	0.6142
$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{I}^{\text {c }}$	9	2148	1981	2072	2031	16.03_{3}	$17.28{ }_{6}$	$0.2797{ }^{0}$	0.33985	0.6195_{5}
$\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{Br}^{\text {c }}$	9	2060	1851	1968	1933	$13.93{ }_{3}$	$15.72{ }_{4}$	0.3506_{1}	0.2758_{3}	0.6264_{4}
$\mathrm{Cr}(\mathrm{CO})_{5} \mathrm{I}^{\text {c }}$	9	2054	1854	1967	1935	13.97,	$15.71{ }_{3}$	0.3326_{8}	0.2522_{6}	0.5849_{3}
$\mathrm{W}(\mathrm{CO})_{5} \mathrm{Cl}^{\text {c }}$	9	2071	1817	1966	1913	13.52_{1}^{1}	15.58	0.3828,	0.4153_{4}	0.7982_{2}
$\mathrm{W}(\mathrm{CO})_{5} \mathrm{Br}^{\text {c }}$	9	2065	1841	1962	1928	.13.777	$15.68{ }_{3}$	0.3983 。	0.2672_{0}	0.6655_{0}
$\mathrm{W}(\mathrm{CO})_{5} \mathrm{I}^{\text {c }}$	9	2063	1844	1962	1932	$13.80{ }_{5}$	$15.71{ }_{2}$	$0.3942{ }_{2}$	0.2360_{0}	$0.6302{ }_{2}$
$\mathrm{NH}_{2}(\mathrm{Me}) \mathrm{CCr}(\mathrm{CO})_{s}{ }^{\text {d }}$	10	2063	1949	1964	1941	15.42_{2}	$15.78{ }_{8}$	0.38415	0.1814^{5}	0.5655,
$\mathrm{NH}(\mathrm{Me})_{2} \mathrm{CCr}(\mathrm{CO}){ }_{5}{ }^{\text {d }}$	10	2058	1940	1970	1940	15.33_{3}	15.770	0.32650	0.23697	0.5634_{8}
$[(\mathrm{Et}) \mathrm{NH}(\mathrm{Me}) \mathrm{C}] \mathrm{Cr}(\mathrm{CO})_{s}{ }^{\text {a }}$	10	2061	1938	1969	1938	15.30_{4}	$15.76{ }_{2}$	0.3423_{0}	0.24469	$0.5869{ }^{\text {g }}$
$\left[\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{NH}(\mathrm{Me}) \mathrm{C}\right] \mathrm{Cr}(\mathrm{CO})_{s}{ }^{4}$	10	2058	1938	1968	1941	15.27_{4}	15.777	0.3412_{8}	$0.2132{ }_{2}$	0.55450
$[(1-\mathrm{Pr}) \mathrm{NH}(\mathrm{Me}) \mathrm{C}] \mathrm{Cr}(\mathrm{CO})_{s}{ }^{\text {d }}$	10	2060	1940	1970	1940	15.330	15.77,	0.3354_{4}	0.23697	0.5724_{2}
$\left[\left(\mathrm{C}_{6} \mathrm{H}_{14}\right) \mathrm{NH}(\mathrm{Me}) \mathrm{C}\right] \mathrm{Cr}(\mathrm{CO})_{3}{ }^{\text {d }}$	10	2057	1936	1968	1936	$15.28{ }_{5}$	$15.72{ }^{3}$	0.32669	$0.2523{ }_{8}$	0.57907
$[(t-\mathrm{Bu}) \mathrm{NH}(\mathrm{Me}) \mathrm{C}] \mathrm{Cr}(\mathrm{CO})_{s}{ }^{\text {d }}$	10	2058	1918	1965	1936	14.96	15.72^{5}	$0.3536{ }_{5}$	0.2285	0.5822_{0}
$\left[\left(p-\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{NH}(\mathrm{Mc}) \mathrm{C}\right] \mathrm{Cr}(\mathrm{CO}){ }^{\text {d }}{ }^{\text {d }}$	10	${ }_{2} 2058$	1921	1966	1931	$15.05{ }^{8}$	$15.67{ }^{\circ}$	0.3370	0.2755_{5}	0.6125_{5}
$\left[\left(p-\mathrm{OMcC}_{6} \mathrm{H}_{4}\right) \mathrm{NH}(\mathrm{Me}) \mathrm{C}\right] \mathrm{Cr}(\mathrm{CO})_{s}{ }^{4}$	10	2058	1924	1969	1940	${ }^{15.059}$	$15.77{ }^{\text {c }}$	$0.3364{ }_{9}$	0.2290_{2}	$0.5675{ }_{5}$
$\left[\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right) \mathrm{NH}(\mathrm{Me}) \mathrm{C}\right] \mathrm{Cr}(\mathrm{CO})_{5}^{4}$	10	2058	1938	1969	1938	15.30_{8}	15.74,	$0.3288{ }_{6}$	$0.2446{ }_{9}$	0.57354

$$
\begin{aligned}
& 0.5790_{0} \\
& 0.6115_{9} \\
& 0.6112_{9} \\
& 0.5535_{2} \\
& 0.5470_{8} \\
& 0.6221_{2} \\
& 0.6190_{6} \\
& 0.6598_{9} \\
& 0.6542_{9} \\
& 0.6668_{4} \\
& 0.5520_{2} \\
& 0.6400_{1} \\
& 0.6137_{1} \\
& 0.5811_{7} \\
& 0.6047_{0} \\
& 0.6291_{9} \\
& 0.6057_{1} \\
& 0.5890_{4} \\
& 0.6342_{8} \\
& 0.5888_{5} \\
& 0.653_{0}
\end{aligned}
$$

method described in Part III of this series are used, all the CO stretching force constants of monosubstituted metal carbonyls $\mathrm{LM}(\mathrm{CO})_{5}$ may be calculated with great precision. This method has now been applied to a second series of $\mathrm{LM}(\mathrm{CO})_{5} \mathrm{com}-$ pounds and the results are presented in Table 1.

The calculations were mainly carried out in double precision on an IBM 360 type 30 computer of the Digital Computing Laboratory of the University of Ghent.

SEPARATION OF INDUCTIVE AND MESOMERIC EFFECTS

CO stretching frequencies and force constant shifts in substituted metal carbonyls are currently interpreted in terms of the differences in π bonding ability between the ligands ${ }^{14}$, although in some infrared studies ${ }^{15}$ it has been suggested that is the σ bonding ability of the ligand and not its π bonding capacity which is the principal factor in determining the CO stretching frequencies of the complex.

In a particularly interesting paper ${ }^{16}$, Graham has assumed that inductive effects operating through the ligand-metal σ bond, and ligand-metal π bonding, are both important in determining the carbonyl stretching force constants in complexes of the type $\mathrm{LM}(\mathrm{CO})_{5}(\mathrm{M}=\mathrm{Mo}, \mathrm{Mn})$.

In order to separate the inductive and mesomeric effects, the following simple relations have been suggested by Graham:

$$
\begin{aligned}
& \Delta k_{1}=k_{1}^{\prime}-k_{1}=m \cdot \Delta \sigma+n \cdot \Delta \pi \\
& \Delta k_{2}=k_{2}^{\prime}-k_{2}=\Delta \sigma+\Delta \pi
\end{aligned}
$$

with $m=1$ and $n=2$. In these equations k_{1}^{\prime} and k_{1} are the stretching force constants of the carbonyl group trans to L in the compound considered and in the reference compound respectively, while k_{2}^{\prime} and k_{2} are the related stretching force constants of the carbonyl groups cis to $L . \Delta \sigma$ and $\Delta \pi$ are the differences between the σ inductive and π acceptor properties of the ligands. The coefficient $m=1$ is introduced to allow for the assumption that the inductive effect of the ligand operates equally over all five CO groups, whereas the coefficient $n=2$ simply arises from the splitting of the over-all change in the π portion according to the treatment of Jones ${ }^{2}$.

Using these equations the σ and π parameters for a series of pentacarbonylmanganese derivatives $\mathrm{LMn}(\mathrm{CO})_{5}$ have been calculated, some of them for the first time. As the required experimental stretching force constants k_{1} and k_{2} are closely related to the interaction force constants, and since the calculation method ${ }^{3}$ used here allows the direct evaluation of all five of the most important CO force constants, all in perfect agreement with the vibrational data, the parameters presented in Table 2 are considered more accurate.

Despite the increased accuracy, however the magnitude acid variation of σ and π donor-acceptor properties is very similar to that found by Graham ${ }^{16}$. However, $\mathrm{HMn}(\mathrm{CO})_{5}$ is preferred as the reference compound over $\mathrm{CH}_{3} \mathrm{Mn}(\mathrm{CO})_{5}$ as force constant values for the former have been calculated exactly using the isotopic substitution method ${ }^{17}$.

It is pertinent to query the justification for the calculation of force constants to nine significant figures, despite the fact that from such calculations it is possible to

TABLE 2
σ and π bonding parameters for pentacarbonytmangantese complexes LMn(CO)s"

L	k_{1}	k_{2}	Δk_{1}	Δk_{2}	$\Delta \sigma$	$\Delta \pi$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}^{5}$	16.651	16.727	0.191	-0.153	-0.497	0.344
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Sn}$	16.308	16.498	-0.152	-0.382	-0.612	0.230
$\mathrm{Br}_{3} \mathrm{Sn}^{4}$	16.984	17.188	0.524	0.308	0.092	0.216
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Ge}^{4}$	16.439	16.665	-0.021	-0.215	-0.409	0.194
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnC}_{6} \mathrm{~F}_{5}$	16.564	16.797	0.104	-0.083	-0.270	0.187
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}$	16.597	16.879	0.137	-0.001	-0.139	0.138
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$	16.636	16.927	0.176	0.047	-0.082	0.129
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{~Pb}$	16.346	16.646	-0.114	-0.234	-0.354	0.120
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sn}$	16.314	16.643	-0.146	-0.237	-0.328	0.091
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Si}$	16.345	16.680	-0.115	-0.200	-0.285	0.085
$\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{Sn}$	16.763	17.131	0.303	0.251	0.199	0.052
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}^{4}$	16.406	16.792	0.054	-0.088	-0.122	0.034
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Ge}^{5}$	16.318	16.711	-0.142	-0.169	-0.196	0.027
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SnCl}_{2}$	16.683	17.085	0.223	0.205	0.187	0.018
$\mathrm{H}^{\text {b }}$	16.460	16.880				
$\mathrm{Br}_{3} \mathrm{Sn}^{5}$	16.823	17.253	0.363	0.373	0.383	-0.010
$\mathrm{HCFClCF}_{2}$	16.543	17.301	0.083	0.421	0.759	-0.338
$\mathrm{HCCl}_{2} \mathrm{CF}_{2}$	16.528	17.292	0.068	0.412	0.756	-0.344
$\mathrm{HCF}_{2} \mathrm{CF}_{2}$	16.549	17.329	0.089	0.449	0.809	-0.360
$\mathrm{N}_{3} \mathrm{C}_{3} \mathrm{~F}_{2}$	16.509	17.296	0.049	0.416	0.783	-0.367
cyclo- $\mathrm{C}_{4} \mathrm{~F}_{5}$	16.594	17.383	0.134	0.503	0.872	-0.369
cyclo-C6 F_{9}	16.604	17.398	0.144	0.518	0.892	-0.374
$\mathrm{C}_{4} \mathrm{~F}_{5}$	16.494	17.289	0.034	0.409	0.784°	-0.375
$\mathrm{NC}_{5} \mathrm{~F}_{4}$	16.505	17.310	0.045	0.430	0.815	-0.385
$\mathrm{HCF}_{2} \mathrm{CFCl}$	16.534	17.345	0.074	0.465	0.856	-0.391

" All spectra were measured in cyclohexane solution. Force constants have been taken from parts III and VII of this series. ${ }^{b}$ Reference.
reproduce the experimental values for the wave numbers perfectly to within 1×10^{-10} cm^{-1}.

The experimental precision in determining the force constants is, of course, not nearly so high. Indeed, on the assumption that they are mutually independent, root mean square errors m (standard deviations σ) of $\pm 1 \mathrm{~cm}^{-1}$ in each of the four bands in a typical case of $\mathrm{LM}(\mathrm{CO})_{5}$ compounds, change the values of k_{1} and k_{2} by m equal to 0.029 and 0.013 mdynes $/ \AA$, and of $k_{\mathrm{c}}, k_{\mathrm{c}}$, and k_{t} by m equal to $0.010,0.011$ and 0.0065 mdynes $/ \AA$ respectively. Actually such an experimental precision is an upper limit, since it pre-supposes the comparison of spectra obtained under the most favorable conditions and in one and the same solvent. The corresponding uncertainties for the σ and π parameters are easy to evaluate.

The progression of σ and π parameters in some tin derivatives, as reported in Table 3, is one interesting aspect of the results. A comparison of the parameters found by Graham ${ }^{16}$ on the basis of the Cotton and Kraihanzel approximate force constant calculation method (needing only three frequencies) with those derived from the rigorous algebraic approach presented here (using all four frequencies) suggests that

TABLE 3
INFLUENGE OF FORCE CONSTANTS CALCULATION METHODS ON σ AND π PARAMETERS FOR $\left(\mathrm{R}_{3-n} \operatorname{SnX}_{n}\right) \mathrm{Mn}(\mathrm{CO})_{s}$

$\mathrm{R}_{3-n} \mathrm{SnX}_{n}$	$\sigma_{1}{ }^{\text {a }}$	$\sigma_{2}{ }^{\text {b }}$	$\pi_{1}{ }^{\text {a }}$	$\pi_{2}{ }^{\text {b }}$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Sn}$	-0.612	-0.84	0.230	0.51
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SnCl}$	-0.497	-0.66	0.344	0.56
	-0.122^{d}		$0.034^{\text {d }}$	
$\mathrm{CH}_{3} \mathrm{SnCl}_{2}$	f	0.02	f	0.23
SnCl_{3}	$0.383^{\text {c, }}$,	0.18	$-0.010^{-i, 5}$	0.31
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sn}$	-0.328	-0.59	0.091	0.41
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnCl}$	-0.121	-0.38	0.140	0.43
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SnCl}_{2}$	0.187	-0.04	0.018	0.29
SnCl_{3}	$0.383^{\text {e.f }}$	0.18	$-0.010^{\text {c. }}$.	0.31
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{Sn}$	-0.328	-0.59	0.091	0.41
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SnC}_{6} \mathrm{~F}_{5}$	-0.270	-0.52	0.187	0.49
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$	-0.082	-0.31	0.129	0.41
$\mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$	0.199	-0.27	0.052	0.51

[^0]the significance of differences in force constants in series of related compounds is not so absolute as generally stated. It appears that particular trends in the π parameter may be reversed by applying another, more exact, method of calculation.

The increasing trend in the σ parameter with progressive chlorine or $\mathrm{C}_{6} \mathrm{H}_{5}$ substitution is as expected. The overall effect of this progressive substitution means that the substituted tin group becomes a weaker σ donor ligand with every new substitution. As a result of this effect the contraction of the filled d orbitals of manganese will progressively increase, reducing their overlap with the antibonding π orbital on carbon monoxide and hence increasing the CO stretching frequency. At the same time, the excess negative charge built up on manganese by donor σ bonding, and available for back donation to the ligand, should decrease.

The changes and fluctuations in the π parameter are not so clear-cut. With the introduction of the first electronegative substituent (chlorine or $\mathrm{C}_{6} \mathrm{~F}_{5}$ group) in the $\mathrm{R}_{3} \mathrm{Sn}$ ligand, the π parameter appears to rise, suggesting that there should be an increase in π electron withdrawal from manganese to tin. This result, however, does not fit the expected synergic character in the metal-ligand bond, although the change in the π parameter also results in an increase of $v(C O)$.

Tin itself has d_{π} orbitals which could be sensitive to electronegative substituents, and for this reason, the first chlorine or $\mathrm{C}_{6} \mathrm{~F}_{5}$ substituent could cause a contraction of these tin d_{π} orbitals, increasing their π bonding with the manganese atom. This could be a possible explanation for the observed increase of the π parameter.

The second substitution, however, gives rise to a drop of the parameter for π acceptor ability, in agreement with the synergic interaction, while the third substitution leads to an increase of the Graham π parameter, when the approximate evaluation method is used, but yields a further decrease of the π parameter if the rigorous direct
calculation method is applied. The latter effect is more logical than the former, for if this result is accepted, decreases of the π parameter after a second and third substitution could be interpreted as a result of the contribution of two simultaneous processes, (a) a further contraction of the tin d_{π} orbitals beyond the ideal extent for overlap with the manganese d orbitals, and (b) a back donation from the electronegative substituent to tin ${ }^{19}$, which also would reduce the π acceptor capacity of tin with respect to the manganese atom. Such a suggestion agrees with a partial decrease of $v(\mathrm{CO})$, which is evidently cancelled by a greater potential increase of $v(C O)$ due to the inductive effect.

In general, these results point out the relative importance of the σ donor effect at the expense of the mesomeric effect.

Finally, it should be stated that, as suggested by Gay and Graham ${ }^{20}$, it will be necessary to examine the IR spectra of isotopic enriched species in order to arrive at less speculative interpretations regarding the relation of CO stretching force constants to chemical bonding. However, this refinement does not eliminate the need to integrate both $v(\mathrm{M}-\mathrm{C})$ and $v(\mathrm{M}-\mathrm{L})$ in the carbonyl stretching force constants calculations.

ACKNOWLEDGEMENT

The authors wish to thank Prof. Dr. C. C. Grosjean for permission to use the computing facilities of his institute and Miss. Lic. R. M. De Caluwe and Dr. H. Steyaert for executing the computer programs. They also wish to express their gratitude to Dr. E. V. Van den Berghe for many helpful discussions.

REFERENCES

[^1]
[^0]: ${ }^{a} \sigma_{1}, \pi_{1}: \sigma$ and π parameters obtained in this study. ${ }^{b} \sigma_{2}, \pi_{2}$: Graham σ and π parameters. ${ }^{c}$ Ref. 5. ${ }^{d}$ Ref. 4. * SnBr_{3} - ${ }^{5}$ Force constants calculations for these compounds could not be made as the B_{1} mode of these derivatives has not, as yet, been assigned.

[^1]: 1 F. A. Cotton and C. S. Kraihanzel, J. Amer. Chem. Soc.. 84 (1962) 4432.
 2 L. H. Jones. in S. Kirschner (Ed.), Advances in the Chemistry of the Coordination Compounds, 1961, p. 398.

 3 F. T. Delbeke, E. G. Clafys, G. P. van der Kelen and R. M. de Caluwe. J. Organometal. Chem., 23 (1970) 497.
 4 J. Dalton. I. Paul. G. Smith and F. G. A. Stone. J. Chem. Soc. A, (1968) 1195.
 5 W. Jetz, P. Simons. J. Thompson and W. A. G. Graham. Inorg. Chem., 5 (1966) 2217.
 6 J. A. J. Thompon and W. A. G. Graham, Inorg. Chem., 6 (1967) 1875.
 7 J. B. Wilford and F. G. A. Stone, Inorg. Chem., 4 (1965) 389.
 8 M. Y. Darensbourg and D.J. Darensbourg, Inorg. Chem., 9 (1970) 32.
 9 R. J. H. Clark and B. C. Crosse, J. Chemr. Soc. A, (1969) 224.
 10 J. A. Connor and E. O. Fischer, J. Chem. Soc. A. (1969) 578.
 11 H. T. Silverstein, D. C. Beer and L. J. Todd, J. Organometal. Chem., 21 (1970) 139.
 12 R. L. Keiter and J. G. Verkade, Inorg. Chem., 8 (1969) 2115.
 13 E. O. Fischer, W. Bathelt and J. Muller, Chem. Ber., 103 (1970) 1815.
 14 W. D. Horrocks Jr. and R. C. Taylor, Inorg. Chem., 2 (1963) 723.
 15 R. J. Angelici, J. Inarg. Nucl. Chem., 28 (1966) 2627.
 16 W. A. G. Graham. Inorg. Chem., 7 (1968) 315.
 17 P. S. Braterman, R. W. Harrill and H. D. Kaesz, J. Amer. Chem. Soc., 89 (1967) 2851.
 18 N. Flitcroft, D. A. Harbourne, I. Paul, P. M. Tucker and F. G. A. Stone, J. Chem. Soc. A, (1966) 1130.

 19 E. V. van den Berghe and G. P. van der Kelen, J. Organometal. Chem., 26 (1971) 207.
 20 R. S. Gay and W. A. G. Graham, Inorg. Chem., 8 (1969) 1561.

